副研究員
課題組長(zhǎng)
王志青,男,1982年生,博士,課題組長(zhǎng),所紀(jì)委委員,副研究員,中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)會(huì)員,山西省創(chuàng)新團(tuán)隊(duì)成員,“三晉英才-青年優(yōu)秀人才”,《潔凈煤技術(shù)》中青年專家委員會(huì)委員。2005年畢業(yè)于中國(guó)礦業(yè)大學(xué),同年進(jìn)入中國(guó)科學(xué)院山西煤炭化學(xué)研究所攻讀碩/博士學(xué)位,2010年按時(shí)畢業(yè)并留所工作。一直從事煤氣化、煤基固廢資源化、氣化渣分質(zhì)梯級(jí)利用、焦?fàn)t制清潔氣化焦、型煤、氣化配煤等方面的研究、技術(shù)開(kāi)發(fā)、工程驗(yàn)證、特別是涉企業(yè)應(yīng)用類技術(shù)的完善工作。提出高比例低階煤制潔凈氣化焦新成焦理論、研制配方并完成工業(yè)示范;首次對(duì)氣流床氣化爐與石炭紀(jì)高鋁煤的適應(yīng)性進(jìn)行了研究,完成了三十萬(wàn)噸級(jí)入爐煤的配制和工業(yè)試燒工作;煤矸石基環(huán)保型煤配方已建成50萬(wàn)噸/年生產(chǎn)線;完善了煤氣化、熱解、焦油裂解和甲烷化耦合制富甲烷氣的理論基礎(chǔ),有力支撐了100噸/天中試;提出了催化氣化耦合灰渣鋁硅提取的技術(shù)路線,解決催化劑失活、回收難題的同時(shí)實(shí)現(xiàn)了氣化渣的分質(zhì)梯級(jí)利用制備高端材料。此外,作為負(fù)責(zé)人承擔(dān)國(guó)家基金委面上、國(guó)家基金委青年科學(xué)基金、山西省青年基金、山西省大型儀器改造、中國(guó)煤炭進(jìn)出口公司高技術(shù)開(kāi)發(fā)、中國(guó)科學(xué)院青年促進(jìn)會(huì)、中國(guó)科學(xué)院山西煤炭化學(xué)研究所青年人才基金及中石油、同煤、神華等企業(yè)橫向等項(xiàng)目。作為骨干或聯(lián)系人參與了科技部重大專項(xiàng)、中科院戰(zhàn)略性先導(dǎo)科技專項(xiàng)、973、中國(guó)科學(xué)院大型儀器修購(gòu)專項(xiàng)、知識(shí)創(chuàng)新工程重要方向、山西自然科學(xué)基金、山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)、中國(guó)第一重型機(jī)械集團(tuán)大連設(shè)計(jì)研究院委托項(xiàng)目及知識(shí)創(chuàng)新工程領(lǐng)域前沿等項(xiàng)目。在Chem. Eng.Sci.,Chem. Eng. Sci.,Ind. Eng. Chem. Res.,J. Clean. Prod, Energ. Convers. Manage.,Appl. Energ.,Fuel等國(guó)內(nèi)外學(xué)術(shù)期刊發(fā)表文章百余篇。所在集體獲山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)、山西省科學(xué)技術(shù)進(jìn)步獎(jiǎng)二等獎(jiǎng)、山西省工人先鋒號(hào)、山西省科技奉獻(xiàn)等獎(jiǎng)項(xiàng)。
專利成果:
[1] 王志青, 黃國(guó)寶, 李慶峰, 黃戒介, 房倚天, 趙建濤, 張永奇, 供氫溶劑和表面活性劑在甲烷化反應(yīng)中的應(yīng)用, 2015.
[2] 黃戒介, 杜梅杰, 劉哲語(yǔ), 房倚天, 王志青, 一種高鈣氣化灰渣制備低導(dǎo)熱系數(shù)保溫材料的方法, 2018.
[3] 黃戒介, 楊志榮, 王志青, 房倚天, 一種提高低階煤配煤制取高強(qiáng)度焦炭產(chǎn)率的方法, 2020.
[4] 王志青, 黃國(guó)寶, 李慶峰, 黃戒介, 房倚天, 趙建濤, 張永奇, 一種非負(fù)載型合成氣甲烷化催化劑及制備方法和應(yīng)用, 2017.
[5] 王志青, 李莉, 黃戒介, 房倚天, 冀少華, 李春玉, 王志宇, 董立波, 張永奇, 劉哲語(yǔ), 聶偉, 一種利用催化氣化灰渣制備水玻璃的方法, 2018.
[6] 王志青, 梅艷鋼, 黃戒介, 房倚天, 陳有川, 張永奇, 徐弈豐, 郭金霞, 李莉, 趙建濤, 一種皮革廢料催化熱解氣化的方法, 2016.
[7] 王志青, 梅艷鋼, 黃戒介, 房倚天, 董立波, 王志宇, 趙建濤, 李春玉, 張永奇, 李莉, 一種城市垃圾催化熱解氣化的方法, 2016.
[8] 王志青, 梅艷鋼, 黃戒介, 房倚天, 余中亮, 冀少華, 劉哲語(yǔ), 郝振華, 趙建濤, 張永奇, 一種石油焦催化氣化的方法, 2016.
[9] 王志青, 梅艷鋼, 黃戒介, 房倚天, 余中亮, 聶偉, 宋雙雙, 李俊國(guó), 張永奇, 趙建濤, 一種煤催化氣化的方法, 2016.
[10] 王志青, 梅艷鋼, 黃戒介, 房倚天, 張永奇, 冀少華, 李春玉, 王志宇, 董立波, 聶偉, 李俊國(guó), 郭金霞, 郝振華, 一種催化氣化煤灰制備分子篩的方法, 2018.
[11] 王志青, 梅艷鋼, 黃戒介, 房倚天, 張永奇, 劉哲語(yǔ), 李俊國(guó), 李莉, 李翔宇, 聶偉, 余中亮, 宋雙雙, 一種二氧化碳-水-醇體系回收堿金屬催化劑的方法, 2018.
[12] 王志青, 梅艷鋼, 黃戒介, 房倚天, 張永奇, 宋雙雙, 李莉, 李翔宇, 聶偉, 余中亮, 劉哲語(yǔ), 一種催化氣化耦合氣化灰提取氧化鋁的方法, 2018.
[13] 余鐘亮, 房倚天, 趙建濤, 黃戒介, 李春玉, 郭金霞, 劉哲語(yǔ), 王志青, 一種基于化學(xué)鏈氣化的煤制氫氣及甲烷的工藝, 2018.
學(xué)術(shù)論文:
[1] Q. Zhang, Q. Li, L. Zhang, Z. Wang, X. Jing, Z. Yu, S. Song, Y. Fang, Preliminary study on co-gasification behavior of deoiled asphalt with coal and biomass, Applied Energy, 132 (2014) 426-434.
[2] G. Li, Z. Liu, J. Li, Y. Fang, J. Shan, S. Guo, Z. Wang, Modeling of ash agglomerating fluidized bed gasifier using back propagation neural network based on particle swarm optimization, Applied Thermal Engineering, 129 (2018) 1518-1526.
[3] L. Ding, Y. Zhang, Z. Wang, J. Huang, Y. Fang, Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char, Bioresource Technology, 173 (2014) 11-20.
[4] X. Huo, Z. Wang, J. Huang, R. Zhang, Y. Fang, Bulk Mo and Co–Mo carbides as catalysts for methanation, Catalysis Communications, 79 (2016) 39-44.
[5] Q. Zhang, Q. Li, H. Wang, Z. Wang, Z. Yu, L. Zhang, W. Huang, Y. Fang, Experimental study on co-pyrolysis and gasification behaviors of petroleum residue with lignite, Chemical Engineering Journal, 343 (2018) 108-117.
[6] W. Jiao, Z. Wang, X. Zhou, Y. Mei, R. Feng, T. Liu, L. Ding, J. Huang, Y. Fang, Catalytic steam gasification of sawdust char on K-based composite catalyst at high pressure and low temperature, Chemical Engineering Science, 205 (2019) 341-349.
[7] Q. Zhang, Q. Li, L. Zhang, Z. Yu, X. Jing, Z. Wang, Y. Fang, W. Huang, Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt, Energy, 134 (2017) 301-310.
[8] S. Gao, L. Zhai, Y. Qin, Z. Wang, J. Zhao, Y. Fang, Investigation into the Cleavage of Chemical Bonds Induced by CO2 and Its Mechanism during the Pressurized Pyrolysis of Coal, Energy & Fuels, 32 (2018) 3243-3253.
[9] X. Jing, Z. Wang, Z. Yu, Q. Zhang, C. Li, Y. Fang, Experimental and kinetic investigations of co2 gasification of fine chars separated from a pilot-scale fluidized-bed gasifier, Energy & Fuels, 27 (2013) 2422-2430.
[10] X. Jing, Z. Wang, Q. Zhang, Z. Yu, C. Li, J. Huang, Y. Fang, Evaluation of CO2 gasification reactivity of different coal rank chars by physicochemical properties, Energy & Fuels, 27 (2013) 7287-7293.
[11] L. Li, Z. Wang, J. Huang, S. Ji, Y. Mei, Y. Wang, Y. Fang, Comparison of Silica Leaching Behaviors from the Acid-Leached Residue of Catalytic Gasification and Combustion, Energy & Fuels, 31 (2017) 10745-10751.
[12] Y. Mei, Z. Wang, J. Bai, C. He, W. Li, T. Liu, J. Huang, Y. Fang, Mechanism of Ca Additive Acting as a Deterrent to Na2CO3 Deactivation during Catalytic Coal Gasification, Energy & Fuels, 33 (2019) 938-945.
[13] Y. Mei, Z. Wang, H. Fang, Y. Wang, J. Huang, Y. Fang, Na-Containing Mineral Transformation Behaviors during Na2CO3-Catalyzed CO2 Gasification of High-Alumina Coal, Energy & Fuels, 31 (2017) 1235-1242.
[14] Y. Wang, Z. Wang, J. Huang, Y. Fang, Catalytic Gasification Activity of Na2CO3 and Comparison with K2CO3 for a High-Aluminum Coal Char, Energy & Fuels, 29 (2015) 6988-6998.
[15] Z. Yang, J. Huang, Z. Wang, Y. Fang, Unique Advantages of Gasification-Coke Prepared with Low-Rank Coal Blends via Reasonable Granularity Control, Energy & Fuels, 33 (2019) 2115-2121.
[16] Z. Yu, C. Li, Y. Fang, J. Huang, Z. Wang, Reduction Rate Enhancements for Coal Direct Chemical Looping Combustion with an Iron Oxide Oxygen Carrier, Energy & Fuels, 26 (2012) 2505-2511.
[17] W. Jiao, Z. Wang, W. Jiao, L. Li, Z. Zuo, G. Li, Z. Hao, S. Song, J. Huang, Y. Fang, Influencing factors and reaction mechanism for catalytic CO2 gasification of sawdust char using K-modified transition metal composite catalysts: Experimental and DFT studies, Energy Conversion and Management, 208 (2020) 112522.
[18] G. Li, Z. Liu, T. Liu, J. Shan, Y. Fang, Z. Wang, Techno-economic analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification, Energy Conversion and Management, 164 (2018) 552-559.
[19] M. Du, J. Huang, Z. Liu, X. Zhou, S. Guo, Z. Wang, Y. Fang, Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment, Fuel, 224 (2018) 178-185.
[20] T. Liu, Z.L. Yu, Y.G. Mei, R.T. Feng, S. Yang, Z.Q. Wang, Y.T. Fang, Potassium migration and transformation during the deep reduction of oxygen carrier (OC) by char in coal-direct chemical looping hydrogen generation using potassium-modified Fe2O3/Al2O3 OC, Fuel, 256 (2019) 9.
[21] Y. Mei, Z. Wang, Y. Fang, J. Huang, W. Li, S. Guo, L. Li, CO2 catalytic gasification with NaAlO2 addition for its low-volatility and tolerant to deactivate, Fuel, 242 (2019) 160-166.
[22] Z. Yang, J. Huang, S. Song, Z. Wang, Y. Fang, Insight into the effects of additive water on caking and coking behaviors of coal blends with low-rank coal, Fuel, 238 (2019) 10-17.
[23] Q. Zhang, Q. Yuan, H. Wang, Z. Wang, Z. Yu, L. Liang, Y. Fang, W. Huang, Evaluation of gas switch effect on isothermal gas-solid reactions in a thermogravimetric analyzer, Fuel, 239 (2019) 1173-1178.
[24] Z. Guo, Z. Bai, J. Bai, Z. Wang, W. Li, Co-liquefaction of lignite and sawdust under syngas, Fuel Processing Technology, 92 (2011) 119-125.
[25] Z. Wang, Z. Bai, W. Li, J. Bai, Z. Guo, H. Chen, Effects of ion-exchanged calcium, barium and magnesium on cross-linking reactions during direct liquefaction of oxidized lignite, Fuel Processing Technology, 94 (2012) 34-39.
[26] Z. Wang, Z. Bai, W. Li, H. Chen, B. Li, Quantitative study on cross-linking reactions of oxygen groups during liquefaction of lignite by a new model system, Fuel Processing Technology, 91 (2010) 410-413.
[27] Z. Yang, Q. Meng, J. Huang, Z. Wang, C. Li, Y. Fang, A particle-size regulated approach to producing high strength gasification-coke by blending a larger proportion of long flame coal, Fuel Processing Technology, 177 (2018) 101-108.
[28] Z. Yu, C. Li, X. Jing, Q. Zhang, Z. Wang, Y. Fang, J. Huang, Catalytic chemical looping combustion of carbon with an iron-based oxygen carrier modified by K2CO3: Catalytic mechanism and multicycle tests, Fuel Processing Technology, 135 (2015) 119-124.
[29] X. Li, Z. Wang, J. Wang, X. Jing, J. Huang, L. Li, Y. Mei, W. Li, Y. Fang, Acid-Leaching and Silanization of Catalytic Gasification Ash Enhance the Mechanical Properties of Polyurethane/Ash Composites, Industrial & Engineering Chemistry Research, 58 (2019) 1426-1433.
[30] G. Li, Z. Liu, R. Feng, W. Jiao, Y. Fang, Z. Wang, Conceptual design and analysis of a novel system based on ash agglomerating fluidized bed gasification for co-production of hydrogen and electricity, International Journal of Hydrogen Energy, 43 (2018) 1980-1988.
[31] G. Li, Z. Liu, J. Li, Y. Fang, T. Liu, Y. Mei, Z. Wang, Application of general regression neural network to model a novel integrated fluidized bed gasifier, International Journal of Hydrogen Energy, 43 (2018) 5512-5521.
[32] T. Liu, S. Hu, Z. Yu, J. Huang, J. Li, Z. Wang, Y. Fang, Research of coal-direct chemical looping hydrogen generation with iron-based oxygen carrier modified by potassium, International Journal of Hydrogen Energy, 42 (2017) 11038-11046.
[33] S. Gao, J. Wang, Z. Wang, J. Zhao, Y. Fang, Effect of CO on the CH4 evolution during fast pyrolysis of lignite in reductive atmospheres, Journal of Analytical and Applied Pyrolysis, 106 (2014) 104-111.
[34] Z. Wang, Z. Bai, W. Li, H. Chen, B. Li, The pyridine vapor adsorption behavior and its influence on suppressing low-temperature cross-linking reactions during slow pyrolysis of lignite, Journal of Analytical and Applied Pyrolysis, 87 (2010) 45-49.
[35] Y. Mei, Z. Wang, X. Zhou, L. Ding, Z. Liu, J. Huang, Y. Fang, Pressured carbon dioxide hydrothermal leaching of catalytic gasification ash for dealkalization of solid waste, sodium catalyst recovery and carbon dioxide utilization, Journal of Cleaner Production, 247 (2020) 119109.
[36] S. Gao, J. Zhao, Z. Wang, J. Wang, Y. Fang, J. Huang, Effect of CO on fast pyrolysis behaviors of lignite, Journal of Fuel Chemistry and Technology, 41 (2013) 550-557.
[37] S. Gao, J. Zhao, Z. Wang, J. Wang, Y. Fang, J. Huang, Effect of CO_2 on pyrolysis behaviors of lignite, Journal of Fuel Chemistry and Technology, 41 (2013) 257-264.
[38] Z. Wang, Z. Bai, W. Li, B. Li, H. Chen, Suppressing cross-linking reactions during pyrolysis of lignite pretreated by pyridine, Journal of Fuel Chemistry and Technology, 36 (2008) 641-645.
[39] H. Zhang, J. Li, S. Guo, Z. Wang, Y. Zhang, Y. Fang, Influence of coal ash on potassium retention and ash fusibility during gasification of corn stalk coke, Journal of Fuel Chemistry and Technology, 46 (2018) 1055-1062.
[40] J. Wang, Q. Yan, J. Zhao, Z. Wang, J. Huang, S. Gao, S. Song, Y. Fang, Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor, J Therm Anal Calorim, 118 (2014) 1663-1673.
[41] Y. Wang, Z. Wang, J. Huang, Y. Fang, Investigation into the characteristics of Na2CO3-catalyzed steam gasification for a high-aluminum coal char, J Therm Anal Calorim, 131 (2018) 1213-1220.
[42] Q. Zhang, Q. Li, L. Zhang, Y. Fang, Z. Wang, Experimental and kinetic investigation of the pyrolysis, combustion, and gasification of deoiled asphalt, J Therm Anal Calorim, 115 (2014) 1929-1938.
[43] F. Li, B. Yu, J. Li, Z. Wang, M. Guo, H. Fan, T. Wang, Y. Fang, Exploration of potassium migration behavior in straw ashes under reducing atmosphere and its modification by additives, Renewable Energy, 145 (2020) 2286-2295.
[44] H. Zhang, J. Li, X. Yang, S. Song, Z. Wang, J. Huang, Y. Zhang, Y. Fang, Influence of coal ash on CO2 gasification reactivity of corn stalk char, Renewable Energy, 147 (2020) 2056-2063.
[45] X. Huo, Z. Wang, J. Huang, R. Zhang, Y. Fang, One-step synthesis of bulk Mo and Ni-Mo carbides for methanation, RSC Advances, 6 (2016) 24353-24360.