集團(tuán)總工程師
正高級工程師
據(jù)統(tǒng)計(jì),目前我國北方地區(qū)總采暖供熱建筑面積達(dá)80億㎡,每年能耗約1.8 億tce,占全國總能耗的7%,占全國城市建筑能耗的40%。其中,熱電聯(lián)產(chǎn)集中供熱面積超過45億㎡,熱電聯(lián)產(chǎn)供熱量約占北方集中供熱量的一半以上。隨著人們生活水平的提高,每年新增供暖面積超過1億㎡。目前,我國供熱能耗普遍較高,技術(shù)比較落后。供熱系統(tǒng)中普遍采用靜態(tài)平衡閥來實(shí)現(xiàn)供熱管網(wǎng)的水力平衡,但實(shí)際運(yùn)行狀況和設(shè)計(jì)狀況出入很大,造成部分區(qū)域水力調(diào)節(jié)失調(diào)。為了保證供熱末端用戶的供熱要求,普遍采取“大流量、小溫差”的辦法,增大熱網(wǎng)管徑,增大循環(huán)泵流量,在系統(tǒng)末端加裝增壓泵,從而導(dǎo)致熱能和電能的大量浪費(fèi)。
本文提出采用供熱系統(tǒng)智能控制節(jié)能改造技術(shù),可針對供熱系統(tǒng)存在的水力失衡、能耗高等問題, 進(jìn)行動(dòng)態(tài)平衡調(diào)節(jié),消除冷熱不均,實(shí)現(xiàn)熱力平衡,從而滿足各熱用戶對溫度的需求,達(dá)到節(jié)能降耗的目的。本技術(shù)已通過工程示范應(yīng)用,達(dá)到了一定程度的節(jié)能降耗、安全穩(wěn)定和經(jīng)濟(jì)運(yùn)行的良好效果。
1 供熱系統(tǒng)智能控制節(jié)能技術(shù)
1.1 技術(shù)原理
熱力管網(wǎng)在供熱系統(tǒng)中完成熱的傳遞,熱水經(jīng)過熱力管網(wǎng)將熱量傳送到熱用戶,熱用戶的性質(zhì)不同,需要的熱量也會不同,另外,由于距離熱源的遠(yuǎn)近不同,輸送熱能的管徑大小不同等因素,會造成系統(tǒng)中個(gè)別用戶的實(shí)際流量與設(shè)計(jì)要求流量之間的不一致現(xiàn)象,被稱之為水力失調(diào)。該技術(shù)主要針對目前供熱領(lǐng)域中普通存在的水力失調(diào)問題,設(shè)計(jì)一套智能閥門,以有效解決復(fù)雜的供熱網(wǎng)管系統(tǒng),某個(gè)閥門的調(diào)節(jié)不會影響其它閥門,使得每個(gè)閥門控制的支路按用戶需求輸送合適的熱量,通過確保管路的熱量平衡達(dá)到節(jié)能目的。在確保各管路的流量按需分配之后,為進(jìn)一步節(jié)能,還集成了列入智能變頻技術(shù),保證水泵的頻率跟隨管路阻力的變化而變化,徹底擺脫傳統(tǒng)的頂壓供水變頻技術(shù)。在此基礎(chǔ)上,該技術(shù)還整合了物聯(lián)網(wǎng)和EAOC(能效分析與運(yùn)行優(yōu)化控制)技術(shù),把智能閥門打造成一個(gè)通用的物聯(lián)網(wǎng)結(jié)點(diǎn),把閥門控制的建筑所消耗的能量數(shù)據(jù)以及管道內(nèi)的流動(dòng)數(shù)據(jù)發(fā)送到控制中心,幫助管理人員分析系統(tǒng)的節(jié)能量。
1.2、關(guān)鍵技術(shù)
1.2.1 智能溫控平衡技術(shù)
在集中供熱系統(tǒng)中,由于供熱規(guī)模較大,管網(wǎng)的水力工況變得十分復(fù)雜,其水力失調(diào)問題變得十分突出,從而使其供熱質(zhì)量下降,出現(xiàn)不能滿足用戶要求的情況。對于一個(gè)設(shè)計(jì)合理的系統(tǒng),一般可以通過初調(diào)節(jié),使各用戶的流量達(dá)到設(shè)計(jì)值。但對于一個(gè)規(guī)模大管網(wǎng)復(fù)雜的系統(tǒng),使用目前常用的方法(如阻力系數(shù)法、正常流量法、回水溫度法和經(jīng)驗(yàn)試湊法),由于受到各種條件的制約,存在準(zhǔn)確度不高,需反復(fù)調(diào)試,工作量過大等問題。其效果不是很理想。智能溫控平衡技術(shù)可利用現(xiàn)代控制理論和計(jì)算機(jī)模擬分析相集合,利用水力管網(wǎng)系統(tǒng)實(shí)際運(yùn)行工況動(dòng)態(tài)檢測數(shù)據(jù)對系統(tǒng)的水力工況進(jìn)行模擬分析,進(jìn)而使用分析的數(shù)據(jù)對系統(tǒng)運(yùn)行工況進(jìn)行遠(yuǎn)程自動(dòng)控制,這不僅可以提高調(diào)節(jié)的精度,避免人工調(diào)節(jié)的工作量,而且可以實(shí)現(xiàn)系統(tǒng)水力工況的動(dòng)態(tài)控制。
1.2.2 智能變頻技術(shù)
智能變頻節(jié)電技術(shù)。指在供熱系統(tǒng)中加裝一套智能變頻節(jié)電裝置,利用水泵的原有電機(jī)系統(tǒng)控制,將閥門的開度控制變?yōu)樗玫霓D(zhuǎn)速控制,兩者相結(jié)合實(shí)現(xiàn)調(diào)節(jié)熱平衡目的。其中,智能變頻節(jié)電裝置具備以下兩項(xiàng)功能:
(1)通過合理改變水泵的轉(zhuǎn)速(頻率)節(jié)約電能,如設(shè)備需對流量進(jìn)行控制,適當(dāng)降低轉(zhuǎn)速、調(diào)整流量即可達(dá)到節(jié)能的目的;
(2)在不改變水泵轉(zhuǎn)速(頻率)的情況下,通過檢測、跟蹤負(fù)載變化,根據(jù)其功率因數(shù)和負(fù)載率的變化,優(yōu)化功率輸出,使電機(jī)的輸出功率接近軸功率,從而實(shí)現(xiàn)節(jié)能目的。
1.2.3 無線傳感技術(shù)
該技術(shù)為智能變頻和能效分析提供了基礎(chǔ),保障各項(xiàng)數(shù)據(jù)的傳輸與共享。遠(yuǎn)傳式智能控制器,具有各種輸入型式選擇,實(shí)現(xiàn)各種不同的調(diào)節(jié)功能。也可配室外溫度傳感器,起到隨室外溫度的變化而自動(dòng)調(diào)整供水溫度,也就是通常所說的室外溫度補(bǔ)償?shù)淖饔谩8鶕?jù)控制需要,可組成智能化網(wǎng)絡(luò)控制系統(tǒng),優(yōu)化控制,實(shí)現(xiàn)遠(yuǎn)程監(jiān)控。
1.2.4 EAOC技術(shù)
EAOC即能效分析與運(yùn)行優(yōu)化控制技術(shù),該技術(shù)用于分析供熱系統(tǒng)的各項(xiàng)運(yùn)行參數(shù),合理配置優(yōu)化運(yùn)行策略,降低能耗,確保系統(tǒng)實(shí)現(xiàn)管理上的節(jié)能。
1.3 工藝流程
供熱系統(tǒng)智能控制的工藝流程見圖1。系統(tǒng)中,在熱網(wǎng)的每個(gè)供熱管線分支處安裝一個(gè)智能型動(dòng)態(tài)平衡控制閥,控制閥傳感控制裝置與主控室的服務(wù)器進(jìn)行遠(yuǎn)程無線連接,將本支路的供水溫度、壓力、流量等數(shù)據(jù)傳輸給服務(wù)器,主控室的計(jì)算機(jī)服務(wù)器通過監(jiān)控系統(tǒng)軟件,對各回路數(shù)據(jù)參數(shù)分析比較后,根據(jù)各支路熱用戶的需要,再向智能型動(dòng)態(tài)平衡控制閥發(fā)出執(zhí)行指令,對閥門的開閉度進(jìn)行合理控制,從而實(shí)現(xiàn)調(diào)節(jié)供熱系統(tǒng)的水力平衡。
1.4 智能型動(dòng)態(tài)平衡控制閥
智能型動(dòng)態(tài)平衡控制閥結(jié)構(gòu)示意見圖2。它是由智能控制器和電動(dòng)調(diào)節(jié)閥兩部分組成,是動(dòng)態(tài)平衡與電動(dòng)調(diào)節(jié)一體化的產(chǎn)品。通過配置智能模塊控制裝置,可方便的對各環(huán)路的流量、溫度進(jìn)行自動(dòng)控制,實(shí)現(xiàn)合理利用能量,節(jié)能降耗,智能化管理。調(diào)節(jié)閥用于調(diào)節(jié)熱水的流量和壓力,根據(jù)調(diào)節(jié)部位信號,自動(dòng)控制閥門的開度,從而實(shí)現(xiàn)調(diào)節(jié)作用。現(xiàn)在我國生產(chǎn)此種調(diào)節(jié)閥的廠商比較多,產(chǎn)品質(zhì)量也能符合標(biāo)準(zhǔn),可以根據(jù)供熱系統(tǒng)工況需要進(jìn)行選購。
智能型動(dòng)態(tài)平衡控制閥具備以下兩個(gè)特點(diǎn):
(1)動(dòng)態(tài)平衡功能
動(dòng)態(tài)平衡功能是指根據(jù)末端設(shè)備負(fù)荷變化要求,電動(dòng)調(diào)節(jié)閥膽調(diào)至某一開度時(shí),不論系統(tǒng)壓力如何變化,閥門都能夠動(dòng)態(tài)地平衡系統(tǒng)的阻力,使其流量不受系統(tǒng)壓力波動(dòng)的影響而保持恒定。
(2)電動(dòng)調(diào)節(jié)功能
電動(dòng)調(diào)節(jié)功能是指閥門能根據(jù)目標(biāo)區(qū)域溫度控制信號的變化自動(dòng)的調(diào)節(jié)閥門的開度,從而改變水流量,最終使目標(biāo)區(qū)域的實(shí)際溫度與設(shè)定溫度一致。
1.5 調(diào)節(jié)參數(shù)
由于供熱系統(tǒng)設(shè)備和建筑物有很大的熱惰性,室外氣溫、日照和供水溫度、流量等參數(shù)的變化對用戶室溫的影響并不是立刻發(fā)生,而是滯后一段時(shí)間。因此,為保證用戶室溫的設(shè)計(jì)要求,熱源當(dāng)天的供熱量,不但與當(dāng)天的室外氣溫、供回水溫度、流量、日照、風(fēng)速有關(guān),而且和幾天前的上述參數(shù)都有關(guān)。比如以某天為例,若前幾天一直陰天,熱源供熱情況又不好,與幾天前陽光明媚,熱源供熱良好相比較,為滿足同一用戶室溫要求,則當(dāng)天熱源供熱量將是不同的,相應(yīng)的系統(tǒng)供水溫度、循環(huán)流量也應(yīng)不同。為了更好地實(shí)現(xiàn)按需供熱,必須用動(dòng)態(tài)方法分析熱力工況,并用預(yù)測參數(shù)的方法對供熱系統(tǒng)進(jìn)行動(dòng)態(tài)調(diào)節(jié)。
為了對這種動(dòng)態(tài)工況進(jìn)行動(dòng)態(tài)調(diào)節(jié),必須首先對供熱系統(tǒng)的熱特性加以識別,了解供熱系統(tǒng)熱惰性的大小,延滯的快慢,進(jìn)而搞清以往參數(shù)影響當(dāng)天供熱的天數(shù)。對一個(gè)具體的供熱系統(tǒng)進(jìn)行上述特性的識別,是經(jīng)過大量實(shí)際參數(shù)的測試和數(shù)據(jù)的統(tǒng)計(jì)得到的。然后根據(jù)已知條件,對供熱系統(tǒng)的識別模型進(jìn)行計(jì)算,得到要求的預(yù)測參數(shù),進(jìn)而實(shí)現(xiàn)系統(tǒng)的自動(dòng)調(diào)節(jié)或系統(tǒng)運(yùn)行指導(dǎo)。由于大量數(shù)據(jù)的實(shí)測,手工操作是難以完成的。因此,供熱系統(tǒng)的動(dòng)態(tài)識別和動(dòng)態(tài)調(diào)節(jié),必須配置計(jì)算機(jī)的自動(dòng)監(jiān)控系統(tǒng)。反映供熱系統(tǒng)上述參數(shù)之間的動(dòng)態(tài)過程,可由下列方程表示:
(1)
(2)
(3)
(4)
式中 —— 分別表示供熱系統(tǒng)供、回水溫度, ℃;
—— 供熱系統(tǒng)每天的供熱量,W/ d;
—— 供熱系統(tǒng)循環(huán)流量,t / h;
—— 熱用戶每天平均室溫,℃;
—— 當(dāng)?shù)孛刻炱骄C合外溫,℃;
c—— 供熱系統(tǒng)熱媒比熱,kJ / ( k g·℃);
B —— 散熱器系數(shù);
,,,—— 分別為與供熱系統(tǒng)熱特性有關(guān)的常數(shù)系數(shù);下標(biāo)“τ”、“τ- 1”……“τ- i”分別表示當(dāng)天、前天??前i天的有關(guān)供熱參數(shù)。
α,β,γ,ψ常數(shù)系數(shù)的數(shù)值,是通過實(shí)測大量的,,,后經(jīng)過最小二乘法對式(1)、(2)的擬合得出的。其中j 的取值愈大,說明以往供熱參數(shù)對當(dāng)天供熱的影響愈大,亦即供熱系統(tǒng)的熱惰性愈大。經(jīng)統(tǒng)計(jì)計(jì)算,一般j 取值以4- 5d為宜。系數(shù)擬合的前提,必須以實(shí)測數(shù)據(jù)為依據(jù)。實(shí)測的天數(shù)愈長,求得的系數(shù)愈接近供熱系統(tǒng)的實(shí)際情況。實(shí)測時(shí)間以30d為宜。
對于供熱系統(tǒng)的流量均勻調(diào)節(jié),在直接連接的條件下,使用計(jì)算機(jī)監(jiān)控系統(tǒng),宜采用回水溫度調(diào)節(jié)法。被調(diào)參數(shù)為回水溫度,調(diào)節(jié)參數(shù)為循環(huán)水量或電動(dòng)調(diào)節(jié)閥的閥位。對于間接連接的供熱系統(tǒng),宜采用平均溫度調(diào)節(jié)法,被調(diào)參數(shù)為二次網(wǎng)的供回水平均溫度,調(diào)節(jié)參數(shù)為一次網(wǎng)的循環(huán)流量或電動(dòng)調(diào)節(jié)閥的閥位。
2 供熱系統(tǒng)智能控制節(jié)能技術(shù)的應(yīng)用
2.1 典型用戶
陜西西安某小區(qū)。建設(shè)規(guī)模:本小區(qū)共有42棟建筑,總供熱面積為13.8萬㎡,總設(shè)計(jì)供熱量為8394kW。主要改造內(nèi)容:小區(qū)采用供熱智能系統(tǒng)。節(jié)能技改投資額90萬元。按照供熱季120d,改造后的節(jié)能量為10%計(jì)算,一個(gè)供熱季可節(jié)能800tce,取得節(jié)能經(jīng)濟(jì)效益65萬元,投資回收期1.5a。
2.2 節(jié)能潛力和推廣前景
目前全國北方地區(qū)總采暖供熱建筑面積約80億㎡,其中熱電聯(lián)產(chǎn)集中供熱面積超過45億㎡,每年新增的供暖面積超過1億㎡。此外,我國目前還有53億㎡的公共建筑,50%以上都安裝了中央空調(diào)系統(tǒng),該技術(shù)也可用于中央空調(diào)系統(tǒng)的節(jié)能,技術(shù)推廣應(yīng)用的前景廣闊。通常,我國北方集中供熱的能耗在60~120kWh/(㎡a),公共建筑的中央空調(diào)能耗在10~50kWh/(㎡a)。按2015年推廣到10%計(jì)算(新增供暖面積),節(jié)能能力可達(dá)6萬tce/a。
3 結(jié)束
在我國北方的一些高寒地區(qū),全年采暖期長達(dá)180天左右,近幾年,隨著熱電聯(lián)產(chǎn)集中供熱技術(shù)的推廣應(yīng)用,取締了原來的煤鍋爐供熱狀況,人們的居住環(huán)境得到了徹底改善。但隨著城市的建設(shè),供熱面積不斷增加,熱電廠的能源消耗也在逐漸增大。由于現(xiàn)有供熱系統(tǒng)的調(diào)節(jié)能力有限,導(dǎo)致熱用戶出現(xiàn)近端過熱、遠(yuǎn)端過冷的不平衡現(xiàn)象,并浪費(fèi)了大量的能源。如果推廣應(yīng)用此項(xiàng)供熱節(jié)能改造技術(shù),可以實(shí)現(xiàn)按需供熱,合理降低供熱能耗,節(jié)約原煤的消耗。這不但可以為我們帶來直觀的經(jīng)濟(jì)效益,而且,社會效益也很明顯,通過該項(xiàng)技術(shù)的改造與運(yùn)用,避免了熱能的浪費(fèi),節(jié)省了大量寶貴的能源,并由此對一系列生態(tài)、環(huán)保等起到積極的作用。
供熱系統(tǒng)智能控制節(jié)能改造技術(shù)現(xiàn)已正式列為國家重點(diǎn)節(jié)能技術(shù)推廣項(xiàng)目。此項(xiàng)技術(shù)的推廣應(yīng)用必將對我們的供熱產(chǎn)生深遠(yuǎn)的影響。
參考文獻(xiàn):
[1]石兆玉. 供熱系統(tǒng)運(yùn)行調(diào)節(jié)與控制 [M]. 北京: 清華大學(xué)出版社.1994:172-177,362-375
[2]封官軍,劉 觀,苗郁東.熱水集中供暖系統(tǒng)調(diào)節(jié)監(jiān)視控制裝置的理論及應(yīng)用[EB/OL]. http://www.pmec.net/
bencandy-72-8191-1.htm 2007-10-31
[3]康艷兵,張建國,張揚(yáng).我國熱電聯(lián)產(chǎn)集中供熱的發(fā)展現(xiàn)狀問題與建議[EB/OL]http://www.eri.org.cn/manage/
upload/uploadimages/eri200971142210.pdf
[4]劉 靖,張茂勇.供熱系統(tǒng)的計(jì)算機(jī)模擬分析調(diào)節(jié)法研究 [J].節(jié)能,2000, (2): 3-4.
[5]周軍嶺,姜永成,李 峰.集中供熱熱網(wǎng)的熱力工況模型 [J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2005,(12):1683-1685
[6]高 巍, 蔣興旺.供熱管網(wǎng)水力平衡失調(diào)問題探討 [J].中國新技術(shù)新產(chǎn)品,2009,(14):48
Discussion about technology of intelligent control in heating system
Li Lixin
(Pengcheng Company; Datong coal Mine Group Corporation; Datong; Shanxi;037003)
Abstract: Co-generation district heating has already been widely used in northern part of our country. Heating supply cost increases significantly as prices of coal and water become higher and higher. Operation and regulation of heating system is becoming more and more complicated. Higher requires are proposed on security, reliability and energy-saving operation. By using advanced technology of intelligent control in heating system, parameters and running state of heating system can be obtained in time,temperature and flow rate of water can be changed automatically following outside temperature,quality of heating supply can be better and high-efficiency energy saving can be realized.
Key words: Co-generation;heating system;intelligent control
作者簡介:李利新(1972-),男,山西大同人,工程師,研究方向: 電氣工程及其自動(dòng)化
聯(lián)系電話:13994379986(手機(jī)) 7846076(辦公室)
主管單位:山西大同大學(xué)
主辦單位:山西大同大學(xué)
主編:郝臨山 13835208623
ISSN:1674-0882
CN:14-1345/C
地址:山西省大同市御河橋東
郵政編碼:037009 電話:7158321